If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2+59x-18=0
a = 14; b = 59; c = -18;
Δ = b2-4ac
Δ = 592-4·14·(-18)
Δ = 4489
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4489}=67$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(59)-67}{2*14}=\frac{-126}{28} =-4+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(59)+67}{2*14}=\frac{8}{28} =2/7 $
| 84+4x=200 | | 3(-4x+3)=-11 | | -9=3(n+7 | | 7x+16=12x–8 | | 5x-11-3x+17=-4 | | a-12=2a-3+8+3a | | j/7-2=25 | | 2/3(-12x+15)=12 | | -1(2x+4)=6 | | 2/3(-12x+15=12 | | 2(x+2)=5x+15 | | -5(-7x-3)=85 | | 24+4y=36+y | | 4v+13=676 | | 110+3x^2+2=180 | | 44=y/4+16 | | 54+24s=702 | | 30=-0.5n | | 63/c=7 | | 63/c=27 | | 68=28+n | | r.12=r-34-2 | | 2x+4+7x+5=90 | | 35+2x=125 | | 160+3x-1=26x-2 | | 2.2*0+2.2y=9.8 | | y-73=0 | | x5+5=15 | | 6y-4=4y+18 | | 8x+5=2x=3 | | x/6.2=7.1 | | p/2+2=-1 |